Data Analysis and Interpretation Capstone

Start Date: 06/02/2019

Course Type: Common Course

Course Link: https://www.coursera.org/learn/data-analysis-capstone

Explore 1600+ online courses from top universities. Join Coursera today to learn data science, programming, business strategy, and more.

About Course

The Capstone project will allow you to continue to apply and refine the data analytic techniques learned from the previous courses in the Specialization to address an important issue in society. You will use real world data to complete a project with our industry and academic partners. For example, you can work with our industry partner, DRIVENDATA, to help them solve some of the world's biggest social challenges! DRIVENDATA at www.drivendata.org, is committed to bringing cutting-edge practices in data science and crowdsourcing to some of the world's biggest social challenges and the organizations taking them on. Or, you can work with our other industry partner, The Connection (www.theconnectioninc.org) to help them better understand recidivism risk for people on parole seeking substance use treatment. For more than 40 years, The Connection has been one of Connecticut’s leading private, nonprofit human service and community development agencies. Each month, thousands of people are assisted by The Connection’s diverse behavioral health, family support and community justice programs. The Connection’s Institute for Innovative Practice was created in 2010 to bridge the gap between researchers and practitioners in the behavioral health and criminal justice fields with the goal of developing maximally effective, evidence-based treatment programs. A major component of the Capstone project is for you to be able to choose the information from your analyses that best conveys results and implications, and to tell a compelling story with this information. By the end of the course, you will have a professional quality report of your findings that can be shown to colleagues and potential employers to demonstrate the skills you learned by completing the Specialization.

Course Syllabus

In this Module, your goal is to review the lectures and readings in the Overview of the Capstone Project, and 1) decide which data set you will use to complete your capstone project. In addition 2) identify your research question, 3) propose a title for your final report, and 4) complete Milestone Assignment 1 as described in the assignment. By the end of this Module you will have drafted a final report Title and Introduction to the Research Question. Your Introduction to the Research Question should include a statement of your research question, your motivation or rationale for testing the research question, and some potential implications of answering your research question.

Deep Learning Specialization on Coursera

Course Introduction

The Capstone project will allow you to continue to apply and refine the data analytic techniques lea

Course Tag

Related Wiki Topic

Article Example
Data analysis Data integration is a precursor to data analysis, and data analysis is closely linked to data visualization and data dissemination. The term "data analysis" is sometimes used as a synonym for data modeling.
Data analysis The most important distinction between the initial data analysis phase and the main analysis phase, is that during initial data analysis one refrains from any analysis that is aimed at answering the original research question. The initial data analysis phase is guided by the following four questions:
Geometric data analysis Geometric data analysis can refer to geometric aspects of image analysis, pattern analysis and shape analysis or the approach of multivariate statistics that treats arbitrary data sets as "clouds of points" in "n"-dimensional space. This includes topological data analysis, cluster analysis, inductive data analysis, correspondence analysis, multiple correspondence analysis, principal components analysis and .
Data analysis Barriers to effective analysis may exist among the analysts performing the data analysis or among the audience. Distinguishing fact from opinion, cognitive biases, and innumeracy are all challenges to sound data analysis.
Data analysis Data mining is a particular data analysis technique that focuses on modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing on business information. In statistical applications data analysis can be divided into descriptive statistics, exploratory data analysis (EDA), and confirmatory data analysis (CDA). EDA focuses on discovering new features in the data and CDA on confirming or falsifying existing hypotheses. Predictive analytics focuses on application of statistical models for predictive forecasting or classification, while text analytics applies statistical, linguistic, and structural techniques to extract and classify information from textual sources, a species of unstructured data. All are varieties of data analysis.
Data analysis In the main analysis phase either an exploratory or confirmatory approach can be adopted. Usually the approach is decided before data is collected. In an exploratory analysis no clear hypothesis is stated before analysing the data, and the data is searched for models that describe the data well. In a confirmatory analysis clear hypotheses about the data are tested.
Data analysis Data initially obtained must be processed or organised for analysis. For instance, these may involve placing data into rows and columns in a table format (i.e., structured data) for further analysis, such as within a spreadsheet or statistical software.
Computer-assisted qualitative data analysis software Computer Assisted/Aided Qualitative Data AnalysiS (CAQDAS) offers tools that assist with qualitative research such as transcription analysis, coding and text interpretation, recursive abstraction, content analysis, discourse analysis, grounded theory methodology, etc.
Data analysis Analysis of data, also known as data analytics, is a process of inspecting, cleansing, transforming, and modeling data with the goal of discovering useful information, suggesting conclusions, and supporting decision-making. Data analysis has multiple facets and approaches, encompassing diverse techniques under a variety of names, in different business, science, and social science domains.
Data analysis Statistician John Tukey defined data analysis in 1961 as: "Procedures for analyzing data, techniques for interpreting the results of such procedures, ways of planning the gathering of data to make its analysis easier, more precise or more accurate, and all the machinery and results of (mathematical) statistics which apply to analyzing data."
Data analysis The choice of analyses to assess the data quality during the initial data analysis phase depends on the analyses that will be conducted in the main analysis phase.
Data analysis Analysis refers to breaking a whole into its separate components for individual examination. Data analysis is a process for obtaining raw data and converting it into information useful for decision-making by users. Data is collected and analyzed to answer questions, test hypotheses or disprove theories.
Data analysis The data necessary as inputs to the analysis are specified based upon the requirements of those directing the analysis or customers who will use the finished product of the analysis. The general type of entity upon which the data will be collected is referred to as an experimental unit (e.g., a person or population of people). Specific variables regarding a population (e.g., age and income) may be specified and obtained. Data may be numerical or categorical (i.e., a text label for numbers).
Capstone Publishers Capstone imprints contain fiction and nonfiction titles. Capstone also has digital products (myON, Capstone Interactive Library, CapstoneKids FactHound and PebbleGo) and services (CollectionWiz and Library Processing).
Multiway data analysis Multiway data analysis is a method of analyzing large data sets by representing the data as a multidimensional array. The proper choice of array dimensions and analysis techniques can reveal patterns in the underlying data undetected by other methods.
Data analysis During the final stage, the findings of the initial data analysis are documented, and necessary, preferable, and possible corrective actions are taken.
Forensic data analysis The analysis of large volumes of data is typically performed in a separate database system run by the analysis team. Live systems are usually not dimensioned to run extensive individual analysis without affecting the regular users. On the other hand, it is methodically preferable to analyze data copies on separate systems and protect the analysis teams against the accusation of altering original data.
Social data analysis Social data analysis is a style of analysis in which people work in a social, collaborative context to make sense of data. The term was introduced by Martin Wattenberg in 2005 and recently also addressed as big social data analysis in relation to big data computing.
Data analysis Nonlinear analysis will be necessary when the data is recorded from a nonlinear system. Nonlinear systems can exhibit complex dynamic effects including bifurcations, chaos, harmonics and subharmonics that cannot be analyzed using simple linear methods. Nonlinear data analysis is closely related to nonlinear system identification.
Data analysis After assessing the quality of the data and of the measurements, one might decide to impute missing data, or to perform initial transformations of one or more variables, although this can also be done during the main analysis phase.