Introduction to Power Electronics

Start Date: 07/05/2020

Course Type: Common Course

Course Link: https://www.coursera.org/learn/power-electronics

Explore 1600+ online courses from top universities. Join Coursera today to learn data science, programming, business strategy, and more.

About Course

This course can also be taken for academic credit as ECEA 5700, part of CU Boulder’s Master of Science in Electrical Engineering degree. This course introduces the basic concepts of switched-mode converter circuits for controlling and converting electrical power with high efficiency. Principles of converter circuit analysis are introduced, and are developed for finding the steady state voltages, current, and efficiency of power converters. Assignments include simulation of a dc-dc converter, analysis of an inverting dc-dc converter, and modeling and efficiency analysis of an electric vehicle system and of a USB power regulator. After completing this course, you will: ● Understand what a switched-mode converter is and its basic operating principles ● Be able to solve for the steady-state voltages and currents of step-down, step-up, inverting, and other power converters ● Know how to derive an averaged equivalent circuit model and solve for the converter efficiency A basic understanding of electrical circuit analysis is an assumed prerequisite for this course.

Deep Learning Specialization on Coursera

Course Introduction

Introduction to Power Electronics This course is designed for people who are new to circuit analysis and are looking to brush up on basic concepts and terminology. We will cover the general concepts of circuits while providing total circuit coverage. The course should take approximately 4-5 hours per week, with a minimum of 2 hours spent on each of the 8 quizzes. The circuit schematic presented in this course has been designed to provide an overview of the circuit. However, the actual circuit build will vary depending on the chosen topic. This course is designed to help you get the most out of your circuit build time. After completing this course, you will be able to: 1. Design a basic circuit 2. Describe circuit components 3. Define common components 4. List common components in series and parallel circuits 5. Define loads and loads in parallel circuits 6. Define rectification and rectification curves 7. Define filter circuits 8. Define rectification and filter circuits in series 9. Define rectification and filter circuits in parallel 10. Design a power stage 11. Define and describe rectification circuits 12. Apply basic filters and rectification circuits 13. Design a power stage 14. Define and describe filters and rectification circuits 15. Apply basic filters and rectification circuitsInverse Circuits Charge-Load Regulator An Introduction to Power-Transfer Circuits Power Supplies and Design

Course Tag

Related Wiki Topic

Article Example
Low-power electronics Low-power electronics are electronics that have been designed to use less electric power, e.g. notebook processors.
Power electronics Power electronics is the application of solid-state electronics to the control and conversion of electric power. It also refers to a subject of research in electronic and electrical engineering which deals with the design, control, computation and integration of nonlinear, time-varying energy-processing electronic systems with fast dynamics.
IEEE Power Electronics Society The IEEE Power Electronics Society (PELS) is a society of the Institute of Electrical and Electronics Engineers (IEEE) that focuses on the "development of power electronics technology".
IEEE Power Electronics Society The society was founded on January 1, 1983 by establishing the "IEEE Power Electronics Council". On February 2, 1988 the council changed its name to "IEEE Power Electronics Society".
Power electronics Applications of power electronics range in size from a switched mode power supply in an AC adapter, battery chargers, audio amplifiers, fluorescent lamp ballasts, through variable frequency drives and DC motor drives used to operate pumps, fans, and manufacturing machinery, up to gigawatt-scale high voltage direct current power transmission systems used to interconnect electrical grids. Power electronic systems are found in virtually every electronic device. For example:
Power electronics Electric power generated by wind turbines and hydroelectric turbines by using induction generators can cause variances in the frequency at which power is generated. Power electronic devices are utilized in these systems to convert the generated ac voltages into high-voltage direct current (HVDC). The HVDC power can be more easily converted into three phase power that is coherent with the power associated to the existing power grid. Through these devices, the power delivered by these systems is cleaner and has a higher associated power factor. Wind power systems optimum torque is obtained either through a gearbox or direct drive technologies that can reduce the size of the power electronics device.
Power electronics In hybrid electric vehicles (HEVs), power electronics are used in two formats: series hybrid and parallel hybrid. The difference between a series hybrid and a parallel hybrid is the relationship of the electric motor to the internal combustion engine (ICE). Devices used in electric vehicles consist mostly of dc/dc converters for battery charging and dc/ac converters to power the propulsion motor. Electric trains use power electronic devices to obtain power, as well as for vector control using pulse width modulation (PWM) rectifiers. The trains obtain their power from power lines. Another new usage for power electronics is in elevator systems. These systems may use thyristors, inverters, permanent magnet motors, or various hybrid systems that incorporate PWM systems and standard motors.
Power electronics The capabilities and economy of power electronics system are determined by the active devices that are available. Their characteristics and limitations are a key element in the design of power electronics systems. Formerly, the mercury arc valve, the high-vacuum and gas-filled diode thermionic rectifiers, and triggered devices such as the thyratron and ignitron were widely used in power electronics. As the ratings of solid-state devices improved in both voltage and current-handling capacity, vacuum devices have been nearly entirely replaced by solid-state devices.
Power electronics The first high power electronic devices were mercury-arc valves. In modern systems the conversion is performed with semiconductor switching devices such as diodes, thyristors and transistors, pioneered by R. D. Middlebrook and others beginning in the 1950s. In contrast to electronic systems concerned with transmission and processing of signals and data, in power electronics substantial amounts of electrical energy are processed. An AC/DC converter (rectifier) is the most typical power electronics device found in many consumer electronic devices, e.g. television sets, personal computers, battery chargers, etc. The power range is typically from tens of watts to several hundred watts. In industry a common application is the variable speed drive (VSD) that is used to control an induction motor. The power range of VSDs start from a few hundred watts and end at tens of megawatts.
Power electronics Power electronics started with the development of the mercury arc rectifier. Invented by Peter Cooper Hewitt in 1902, it was used to convert alternating current (AC) into direct current (DC). From the 1920s on, research continued on applying thyratrons and grid-controlled mercury arc valves to power transmission. Uno Lamm developed a mercury valve with grading electrodes making them suitable for high voltage direct current power transmission. In 1933 selenium rectifiers were invented.
Power electronics Power electronics can be used to help utilities adapt to the rapid increase in distributed residential/commercial solar power generation. Germany and parts of Hawaii, California and New Jersey require costly studies to be conducted before approving new solar installations. Relatively small-scale ground- or pole-mounted devices create the potential for a distributed control infrastructure to monitor and manage the flow of power. Traditional electromechanical systems, such as capacitor banks or voltage regulators at substations, can take minutes to adjust voltage and can be distant from the solar installations where the problems originate. If voltage on a neighborhood circuit goes too high, it can endanger utility crews and cause damage to both utility and customer equipment. Further, a grid fault causes photovoltaic generators to shut down immediately, spiking demand for grid power. Smart grid-based regulators are more controllable than far more numerous consumer devices.
Power electronics Power handling and dissipation of devices is also a critical factor in design. Power electronic devices may have to dissipate tens or hundreds of watts of waste heat, even switching as efficiently as possible between conducting and non-conducting states. In the switching mode, the power controlled is much larger than the power dissipated in the switch. The forward voltage drop in the conducting state translates into heat that must be dissipated. High power semiconductors require specialized heat sinks or active cooling systems to manage their junction temperature; exotic semiconductors such as silicon carbide have an advantage over straight silicon in this respect, and germanium, once the main-stay of solid-state electronics is now little used due to its unfavorable high temperature properties.
IEEE Power Electronics Society The IEEE PELS publishes a peer-reviewed publication known as the IEEE Transactions on Power Electronics that focuses on its field of interest.
Power electronics (music) "Tellus Audio Cassette Magazine" produced a compilation compact cassette tape called "Power Electronics" in 1986 that was curated by Joseph Nechvatal.
Introduction Introduction, The Introduction, Intro, or The Intro may refer to:
Power electronics In 1947 the bipolar point-contact transistor was invented by Walter H. Brattain and John Bardeen under the direction of William Shockley at Bell Labs. In 1948 Shockley's invention of the bipolar junction transistor (BJT) improved the stability and performance of transistors, and reduced costs. By the 1950s, higher power semiconductor diodes became available and started replacing vacuum tubes. In 1956 the silicon controlled rectifier (SCR) was introduced by General Electric, greatly increasing the range of power electronics applications.
Electric power system Some electric railway systems also use DC power and thus make use of power electronics to feed grid power to the locomotives and often for speed control of the locomotive's motor. In the middle twentieth century, rectifier locomotives were popular, these used power electronics to convert AC power from the railway network for use by a DC motor. Today most electric locomotives are supplied with AC power and run using AC motors, but still use power electronics to provide suitable motor control. The use of power electronics to assist with motor control and with starter circuits cannot be underestimated and, in addition to rectification, is responsible for power electronics appearing in a wide range of industrial machinery. Power electronics even appear in modern residential air conditioners.
Advanced Introduction to Finality This is the second "Introduction to Finality" episode of the series, following season three's finale, "Introduction to Finality".
Power electronics The power conversion systems can be classified according to the type of the input and output power
IEEE William E. Newell Power Electronics Award The IEEE William E. Newell Power Electronics Award is a Technical Field Award of the IEEE that was established by the IEEE Board of Directors in 2005. This award is presented annually for outstanding contribution(s) to the advancement of power electronics. The award is named in honor of William E. Newell.