Process Mining: Data science in Action

Start Date: 07/05/2020

Course Type: Common Course

Course Link: https://www.coursera.org/learn/process-mining

Explore 1600+ online courses from top universities. Join Coursera today to learn data science, programming, business strategy, and more.

About Course

Process mining is the missing link between model-based process analysis and data-oriented analysis techniques. Through concrete data sets and easy to use software the course provides data science knowledge that can be applied directly to analyze and improve processes in a variety of domains. Data science is the profession of the future, because organizations that are unable to use (big) data in a smart way will not survive. It is not sufficient to focus on data storage and data analysis. The data scientist also needs to relate data to process analysis. Process mining bridges the gap between traditional model-based process analysis (e.g., simulation and other business process management techniques) and data-centric analysis techniques such as machine learning and data mining. Process mining seeks the confrontation between event data (i.e., observed behavior) and process models (hand-made or discovered automatically). This technology has become available only recently, but it can be applied to any type of operational processes (organizations and systems). Example applications include: analyzing treatment processes in hospitals, improving customer service processes in a multinational, understanding the browsing behavior of customers using booking site, analyzing failures of a baggage handling system, and improving the user interface of an X-ray machine. All of these applications have in common that dynamic behavior needs to be related to process models. Hence, we refer to this as "data science in action". The course explains the key analysis techniques in process mining. Participants will learn various process discovery algorithms. These can be used to automatically learn process models from raw event data. Various other process analysis techniques that use event data will be presented. Moreover, the course will provide easy-to-use software, real-life data sets, and practical skills to directly apply the theory in a variety of application domains. This course starts with an overview of approaches and technologies that use event data to support decision making and business process (re)design. Then the course focuses on process mining as a bridge between data mining and business process modeling. The course is at an introductory level with various practical assignments. The course covers the three main types of process mining. 1. The first type of process mining is discovery. A discovery technique takes an event log and produces a process model without using any a-priori information. An example is the Alpha-algorithm that takes an event log and produces a process model (a Petri net) explaining the behavior recorded in the log. 2. The second type of process mining is conformance. Here, an existing process model is compared with an event log of the same process. Conformance checking can be used to check if reality, as recorded in the log, conforms to the model and vice versa. 3. The third type of process mining is enhancement. Here, the idea is to extend or improve an existing process model using information about the actual process recorded in some event log. Whereas conformance checking measures the alignment between model and reality, this third type of process mining aims at changing or extending the a-priori model. An example is the extension of a process model with performance information, e.g., showing bottlenecks. Process mining techniques can be used in an offline, but also online setting. The latter is known as operational support. An example is the detection of non-conformance at the moment the deviation actually takes place. Another example is time prediction for running cases, i.e., given a partially executed case the remaining processing time is estimated based on historic information of similar cases. Process mining provides not only a bridge between data mining and business process management; it also helps to address the classical divide between "business" and "IT". Evidence-based business process management based on process mining helps to create a common ground for business process improvement and information systems development. The course uses many examples using real-life event logs to illustrate the concepts and algorithms. After taking this course, one is able to run process mining projects and have a good understanding of the Business Process Intelligence field. After taking this course you should: - have a good understanding of Business Process Intelligence techniques (in particular process mining), - understand the role of Big Data in today’s society, - be able to relate process mining techniques to other analysis techniques such as simulation, business intelligence, data mining, machine learning, and verification, - be able to apply basic process discovery techniques to learn a process model from an event log (both manually and using tools), - be able to apply basic conformance checking techniques to compare event logs and process models (both manually and using tools), - be able to extend a process model with information extracted from the event log (e.g., show bottlenecks), - have a good understanding of the data needed to start a process mining project, - be able to characterize the questions that can be answered based on such event data, - explain how process mining can also be used for operational support (prediction and recommendation), and - be able to conduct process mining projects in a structured manner.

Deep Learning Specialization on Coursera

Course Introduction

Process Mining: Data science in Action This is a data science course to help you apply the knowledge you've gained from the previous courses in the specialization. You'll need to mine for data and explore the underlying cause of data problems in the natural and human sciences. You'll work on a data science team, using the experimental techniques learned in the courses to find and visualize data, and to create a hypothesis. You'll use Python to mine for data and explore the underlying causes of data problems in the natural and human sciences. You'll work on a data science team, using the experimental techniques learned in the courses to find and visualize data, and to create a hypothesis. It's a fun class to watch and you'll learn a lot of data science skills while doing it.Welcome and Getting Started Data Exploration Data Visualization Hypothesis Testing Programming Languages and Programs This is the second course in the specialization. You should have already completed the first course in this specialization, Programming Languages and Applications, to understand the basic concepts of the new course. This course introduces the basic elements of programming as they are related to computers. You should have already mastered the first course in that specialization, Elements of Programming, when you watch this course. This course covers the C language and the C++ standard library as they are related to computers. You should have already completed the first course in that specialization, Programming Languages and Programs, to understand the basic

Course Tag

Petri Net Process Modeling Process Mining Data Mining

Related Wiki Topic

Article Example
Data mining Data mining is the computational process of discovering patterns in large data sets involving methods at the intersection of artificial intelligence, machine learning, statistics, and database systems. It is an interdisciplinary subfield of computer science. The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use. Aside from the raw analysis step, it involves database and data management aspects, data pre-processing, model and inference considerations, interestingness metrics, complexity considerations, post-processing of discovered structures, visualization, and online updating. Data mining is the analysis step of the "knowledge discovery in databases" process, or KDD.
Process mining Process mining is a process management technique that allows for the analysis of business processes based on event logs. During process mining, specialized data-mining algorithms are applied to event log datasets in order to identify trends, patterns and details contained in event logs recorded by an information system. Process mining aims to improve process efficiency and understanding of processes. Process mining is also known as "Automated Business Process Discovery" (ABPD).
Data mining Computer science conferences on data mining include:
Data mining Data mining is used wherever there is digital data available today. Notable examples of data mining can be found throughout business, medicine, science, and surveillance.
Data mining or a simplified process such as (1) pre-processing, (2) data mining, and (3) results validation.
Data mining There have been some efforts to define standards for the data mining process, for example the 1999 European Cross Industry Standard Process for Data Mining (CRISP-DM 1.0) and the 2004 Java Data Mining standard (JDM 1.0). Development on successors to these processes (CRISP-DM 2.0 and JDM 2.0) was active in 2006, but has stalled since. JDM 2.0 was withdrawn without reaching a final draft.
Data science In 2013, the IEEE Task Force on Data Science and Advanced Analytics was launched, and the first international conference: IEEE International Conference on Data Science and Advanced Analytics was launched in 2014. In 2014, the American Statistical Association section on Statistical Learning and Data Mining renamed its journal to "Statistical Analysis and Data Mining: The ASA Data Science Journal" and in 2016 changed its section name to "Statistical Learning and Data Science". In 2015, the International Journal on Data Science and Analytics was launched by Springer to publish original work on data science and big data analytics. 2013 the first "European Conference on Data Analysis (ECDA)" was organised in Luxembourg establishing the European Association for Data Science (EuADS) in August 2015. In September 2015 the Gesellschaft für Klassifikation (GfKl) added to the name of the Society "Data Science Society" at the third ECDA conference at the University of Essex, Colchester, UK.
Data mining It exists, however, in many variations on this theme, such as the Cross Industry Standard Process for Data Mining (CRISP-DM) which defines six phases:
Cross Industry Standard Process for Data Mining CRISP-DM breaks the process of data mining into six major phases.
Data mining The actual data mining task is the automatic or semi-automatic analysis of large quantities of data to extract previously unknown, interesting patterns such as groups of data records (cluster analysis), unusual records (anomaly detection), and dependencies (association rule mining, sequential pattern mining). This usually involves using database techniques such as spatial indices. These patterns can then be seen as a kind of summary of the input data, and may be used in further analysis or, for example, in machine learning and predictive analytics. For example, the data mining step might identify multiple groups in the data, which can then be used to obtain more accurate prediction results by a decision support system. Neither the data collection, data preparation, nor result interpretation and reporting is part of the data mining step, but do belong to the overall KDD process as additional steps.
Cross Industry Standard Process for Data Mining The sequence of the phases is not strict and moving back and forth between different phases is always required. The arrows in the process diagram indicate the most important and frequent dependencies between phases. The outer circle in the diagram symbolizes the cyclic nature of data mining itself. A data mining process continues after a solution has been deployed. The lessons learned during the process can trigger new, often more focused business questions and subsequent data mining processes will benefit from the experiences of previous ones.
Data mining Polls conducted in 2002, 2004, 2007 and 2014 show that the CRISP-DM methodology is the leading methodology used by data miners. The only other data mining standard named in these polls was SEMMA. However, 3–4 times as many people reported using CRISP-DM. Several teams of researchers have published reviews of data mining process models, and Azevedo and Santos conducted a comparison of CRISP-DM and SEMMA in 2008.
Java Data Mining Java Data Mining (JDM) was a standard Java API for developing data mining applications and tools. JDM defines an object model and Java API for data mining objects and processes. JDM enables applications to integrate data mining technology for developing predictive analytics applications and tools. The JDM 1.0 standard was developed under the Java Community Process as JSR 73. In 2006, the JDM 2.0 specification was being developed under JSR 247, but has been withdrawn in 2011 without standardization.
Examples of data mining In the process of turning from analog into digital, large data sets have been generated, collected, and stored discovering statistical patterns, trends and information which is hidden in data, in order to build predictive patterns. Studies suggest visual data mining is faster and much more intuitive than is traditional data mining. See also Computer vision.
Cross Industry Standard Process for Data Mining Cross Industry Standard Process for Data Mining, commonly known by its acronym CRISP-DM, is a data mining process model that describes commonly used approaches that data mining experts use to tackle problems. Polls conducted at one and the same website (KDNuggets) in 2002, 2004, 2007 and 2014 show that it was the leading methodology used by industry data miners who decided to respond to the survey. The only other data mining standard named in these polls was SEMMA. However, 3-4 times as many people reported using CRISP-DM. A review and critique of data mining process models in 2009 called the CRISP-DM the "de facto standard for developing data mining and knowledge discovery projects." Other reviews of CRISP-DM and data mining process models include Kurgan and Musilek's 2006 review, and Azevedo and Santos' 2008 comparison of CRISP-DM and SEMMA. Efforts to update the methodology started in 2006, but have not led to a new version, and the "Special Interest Group" (SIG) responsible along with the website has long disappeared (see History of CRISP-DM).
Data science It employs techniques and theories drawn from many fields within the broad areas of mathematics, statistics, information science, and computer science, in particular from the subdomains of machine learning, classification, cluster analysis, data mining, databases, and visualization.
Data stream mining Data Stream Mining is the process of extracting knowledge structures from continuous, rapid data records. A data stream is an ordered sequence of instances that in many applications of data stream mining can be read only once or a small number of times using limited computing and storage capabilities.
Data mining prescription information to data mining companies who in turn provided the data
Process mining Process mining follows the options established in business process engineering, then goes beyond those options by providing feedback for business process modeling:
Examples of data mining In recent years, data mining has been used widely in the areas of science and engineering, such as bioinformatics, genetics, medicine, education and electrical power engineering.