Six Sigma Tools for Analyze

Start Date: 09/15/2019

Course Type: Common Course

Course Link: https://www.coursera.org/learn/six-sigma-analyze

Explore 1600+ online courses from top universities. Join Coursera today to learn data science, programming, business strategy, and more.

Course Syllabus

Welcome to Six Sigma Tools for Analyze! This is the third course in the Six Sigma Yellow Belt Specialization. Your team of instructors, Dr. Bill Bailey, Dr. David Cook, Dr. Christine Scherrer, and Dr. Gregory Wiles, currently work in the College of Engineering and Engineering Technology at Kennesaw State University. This module will introduce you to Measurement System Analysis (MSA) which is a key component of the Measure phase of the DMAIC process. You will also learn about Gauge Repeatability & Reproducibility (GR&R) and why it is used in the measurement phase.

Deep Learning Specialization on Coursera

Course Introduction

This course will cover the Measure phase and portions of the Analyze phase of the Six Sigma DMAIC (D

Course Tag

Statistics Binomial Distribution Data Analysis Causality

Related Wiki Topic

Article Example
Design for Six Sigma six sigma design usually called design for six sigma DFSS and DDICA tools. This methodology begins with defining
Design for Six Sigma There are different options for the implementation of DFSS. Unlike Six Sigma, which is commonly driven via DMAIC (Define - Measure - Analyze - Improve - Control) projects, DFSS has spawned a number of stepwise processes, all in the style of the DMAIC procedure.
Six Sigma Six Sigma mostly finds application in large organizations. An important factor in the spread of Six Sigma was GE's 1998 announcement of $350 million in savings thanks to Six Sigma, a figure that later grew to more than $1 billion. According to industry consultants like Thomas Pyzdek and John Kullmann, companies with fewer than 500 employees are less suited to Six Sigma implementation or need to adapt the standard approach to make it work for them. Six Sigma however contains a large number of tools and techniques that work well in small to mid-size organizations. The fact that an organization is not big enough to be able to afford Black Belts does not diminish its abilities to make improvements using this set of tools and techniques. The infrastructure described as necessary to support Six Sigma is a result of the size of the organization rather than a requirement of Six Sigma itself.
Six Sigma Within the individual phases of a DMAIC or DMADV project, Six Sigma utilizes many established quality-management tools that are also used outside Six Sigma. The following table shows an overview of the main methods used.
Lean Six Sigma Lean Six Sigma utilizes the DMAIC phases similar to that of Six Sigma. Lean Six Sigma projects comprise aspects of Lean's waste elimination and the Six Sigma focus on reducing defects, based on critical to quality (CTQ) characteristics. The DMAIC toolkit of Lean Six Sigma comprises all the Lean and Six Sigma tools. The training for Lean Six Sigma is provided through the belt based training system similar to that of Six Sigma. The belt personnel are designated as white belts, yellow belts, green belts, black belts and master black belts, similar to judo.
Design for Six Sigma Historically, although the first successful Design for Six Sigma projects in 1989 and 1991 predate establishment of the DMAIC process improvement process, Design for Six Sigma (DFSS) is accepted in part because Six Sigma organisations found that they could not optimise products past three or four Sigma without fundamentally redesigning the product, and because improving a process or product after launch is considered less efficient and effective than designing in quality. ‘Six Sigma’ levels of performance have to be ‘built-in’.
Design for Six Sigma Design for Six Sigma (DFSS) is a business-process management method related to traditional Six Sigma. It is used in many industries, like finance, marketing, basic engineering, process industries, waste management, and electronics. It is based on the use of statistical tools like linear regression and enables empirical research similar to that performed in other fields, such as social science. While the tools and order used in Six Sigma require a process to be in place and functioning, DFSS has the objective of determining the needs of customers and the business, and driving those needs into the product solution so created. DFSS is relevant for relatively simple items / systems. It is used for product or process "design" in contrast with process "improvement". Measurement is the most important part of most Six Sigma or DFSS tools, but whereas in Six Sigma measurements are made from an existing process, DFSS focuses on gaining a deep insight into customer needs and using these to inform every design decision and trade-off.
Design for Six Sigma It is often seen that the tools used for DFSS techniques vary widely from those used for DMAIC Six Sigma. In particular, DMAIC, DDICA practitioners often use new or existing mechanical drawings and manufacturing process instructions as the originating information to perform their analysis, while DFSS practitioners often use simulations and parametric system design/analysis tools to predict both cost and performance of candidate system architectures. While it can be claimed that two processes are similar, in practice the working medium differs enough so that DFSS requires different tool sets in order to perform its design tasks. DMAIC, IDOV and Six Sigma may still be used during depth-first plunges into the system architecture analysis and for "back end" Six Sigma processes; DFSS provides system design processes used in front-end complex system designs. Back-front systems also are used. This makes 3.4 defects per million design opportunities if done well.
Six Sigma Six Sigma identifies several key roles for its successful implementation.
Design for Six Sigma Traditional six sigma methodology, DMAIC, has become a standard process optimization tool for the chemical process industries.
Six Sigma The 1.5 sigma shift has also become contentious because it results in stated "sigma levels" that reflect short-term rather than long-term performance: a process that has long-term defect levels corresponding to 4.5 sigma performance is, by Six Sigma convention, described as a "six sigma process." The accepted Six Sigma scoring system thus cannot be equated to actual normal distribution probabilities for the stated number of standard deviations, and this has been a key bone of contention over how Six Sigma measures are defined. The fact that it is rarely explained that a "6 sigma" process will have long-term defect rates corresponding to 4.5 sigma performance rather than actual 6 sigma performance has led several commentators to express the opinion that Six Sigma is a confidence trick.
Six Sigma Some organizations use additional belt colours, such as "Yellow Belts", for employees that have basic training in Six Sigma tools and generally participate in projects and "White belts" for those locally trained in the concepts but do not participate in the project team. "Orange belts" are also mentioned to be used for special cases.
Six Sigma One criticism voiced by Yasar Jarrar and Andy Neely from the Cranfield School of Management's Centre for Business Performance is that while Six Sigma is a powerful approach, it can also unduly dominate an organization's culture; and they add that much of the Six Sigma literature – in a remarkable way (six-sigma claims to be evidence, scientifically based) – lacks academic rigor:
Six Sigma The DMADV project methodology, known as DFSS ("Design For Six Sigma"), features five phases:
Six Sigma In , some practitioners have combined Six Sigma ideas with lean manufacturing to create a methodology named Lean Six Sigma. The Lean Six Sigma methodology views lean manufacturing, which addresses process flow and waste issues, and Six Sigma, with its focus on variation and design, as complementary disciplines aimed at promoting "business and operational excellence". Companies such as GE, Verizon, GENPACT, and IBM use Lean Six Sigma to focus transformation efforts not just on efficiency but also on growth. It serves as a foundation for innovation throughout the organization, from manufacturing and software development to sales and service delivery functions.
Six Sigma The use of "Black Belts" as itinerant change agents has fostered an industry of training and certification. Critics have argued there is overselling of Six Sigma by too great a number of consulting firms, many of which claim expertise in Six Sigma when they have only a rudimentary understanding of the tools and techniques involved or the markets or industries in which they are acting.
SDI Tools SDI Tools are typically used in Six Sigma training, industry, and academic research
Six Sigma "Six Sigma" was registered June 11, 1991 as . In 2005 Motorola attributed over US$17 billion in savings to Six Sigma.
Design for Six Sigma Proponents of DMAIC, DDICA (Design Develop Initialize Control and Allocate) and Lean techniques might claim that DFSS falls under the general rubric of Six Sigma or Lean Six Sigma (LSS). Both methodologies focus on meeting customer needs and business priorities as the starting-point for analysis.
Design for Six Sigma DMADV, define – measure – analyze – design – verify, is sometimes synonymously referred to as DFSS, although alternatives such as IDOV (Identify, Design, Optimize, Verify) are also used. The traditional DMAIC Six Sigma process, as it is usually practiced, which is focused on evolutionary and continuous improvement manufacturing or service process development, usually occurs after initial system or product design and development have been largely completed. DMAIC Six Sigma as practiced is usually consumed with solving existing manufacturing or service process problems and removal of the defects and variation associated with defects. It is clear that manufacturing variations may impact product reliability. So, a clear link should exist between reliability engineering and Six Sigma (quality). In contrast, DFSS (or DMADV and IDOV) strives to generate a new process where none existed, or where an existing process is deemed to be inadequate and in need of replacement. DFSS aims to create a process with the end in mind of optimally building the efficiencies of Six Sigma methodology into the process "before" implementation; traditional Six Sigma seeks for continuous improvement "after" a process already exists.