Data Science con Python e R Specialization

Start Date: 06/27/2021

Course Type: Specialization Course

Course Link: https://www.coursera.org/specializations/data-science-con-python-e-r

About Course

PyTorch NumPy Pandas MatplotlibPython ProgrammingRegressione LASSO PLS Ridge lineare multiplaRegressione e clustering con Rdplyr tidyverse ggplot2 tidyrPacchetti R: dplyr ggplot2 laps glmnet plsReti neurali artificiali di tipo shallow e deepApprendimento supervisionato e non supervisionatoAcquisire raccogliere organizzare elaborare e modellare i datiProblem solving proattivoScrittura di codici in maniera corretta ed efficaceAnalizzare dati strutturati e non strutturati

Course Syllabus

Python: Istruzioni per l’uso
Machine Learning e Data Mining in R
Python per la Data Science

Coursera Plus banner featuring three learners and university partner logos

Course Introduction

Diventa un esperto dei dati con Python e R. Crea le basi per la tua carriera da Data Scientist. Esegui analisi su data set reali e impara ad utilizzare correttamente R e Python

Course Tag

Related Wiki Topic

Article Example
Data science he initiated the modern, non-computer science, usage of the term "data science" and advocated that statistics be renamed data science and statisticians data scientists.
Data science In 2013, the IEEE Task Force on Data Science and Advanced Analytics was launched, and the first international conference: IEEE International Conference on Data Science and Advanced Analytics was launched in 2014. In 2014, the American Statistical Association section on Statistical Learning and Data Mining renamed its journal to "Statistical Analysis and Data Mining: The ASA Data Science Journal" and in 2016 changed its section name to "Statistical Learning and Data Science". In 2015, the International Journal on Data Science and Analytics was launched by Springer to publish original work on data science and big data analytics. 2013 the first "European Conference on Data Analysis (ECDA)" was organised in Luxembourg establishing the European Association for Data Science (EuADS) in August 2015. In September 2015 the Gesellschaft für Klassifikation (GfKl) added to the name of the Society "Data Science Society" at the third ECDA conference at the University of Essex, Colchester, UK.
Data science Turing award winner Jim Gray imagined data science as a "fourth paradigm" of science (empirical, theoretical, computational and now data-driven) and asserted that "everything about science is changing because of the impact of information technology" and the data deluge.
Data science Data science, also known as data-driven science, is an interdisciplinary field about scientific methods, processes and systems to extract knowledge or insights from data in various forms, either structured or unstructured, similar to Knowledge Discovery in Databases (KDD).
Data science The term "data science" (originally used interchangeably with "datalogy") has existed for over thirty years and was used initially as a substitute for computer science by Peter Naur in 1960. In 1974, Naur published "Concise Survey of Computer Methods", which freely used the term data science in its survey of the contemporary data processing methods that are used in a wide range of applications.
Data science Data science is a "concept to unify statistics, data analysis and their related methods" in order to "understand and analyze actual phenomena" with data.
Data science In April 2002, the International Council for Science: Committee on Data for Science and Technology (CODATA) started the "Data Science Journal", a publication focused on issues such as the description of data systems, their publication on the internet, applications and legal issues. Shortly thereafter, in January 2003, Columbia University began publishing "The Journal of Data Science", which provided a platform for all data workers to present their views and exchange ideas. The journal was largely devoted to the application of statistical methods and quantitative research. In 2005, The National Science Board published "Long-lived Digital Data Collections: Enabling Research and Education in the 21st Century" defining data scientists as "the information and computer scientists, database and software and programmers, disciplinary experts, curators and expert annotators, librarians, archivists, and others, who are crucial to the successful management of a digital data collection" whose primary activity is to "conduct creative inquiry and analysis."
Data science Although use of the term "data science" has exploded in business environments, many academics and journalists see no distinction between data science and statistics. Writing in Forbes, Gil Press argues that data science is a buzzword without a clear definition and has simply replaced “business analytics” in contexts such as graduate degree programs. In the question-and-answer section of his keynote address at the Joint Statistical Meetings of American Statistical Association, noted applied statistician Nate Silver said, “I think data-scientist is a sexed up term for a statistician...Statistics is a branch of science. Data scientist is slightly redundant in some way and people shouldn’t berate the term statistician.”
Data science In 2001, William S. Cleveland introduced data science as an independent discipline, extending the field of statistics to incorporate "advances in computing with data" in his article "Data Science: An Action Plan for Expanding the Technical Areas of the Field of Statistics," which was published in Volume 69, No. 1, of the April 2001 edition of the International Statistical Review / Revue Internationale de Statistique. In his report, Cleveland establishes six technical areas which he believed to encompass the field of data science: multidisciplinary investigations, models and methods for data, computing with data, pedagogy, tool evaluation, and theory.
Data science "Data Scientist" has become a popular occupation with Harvard Business Review dubbing it "The Sexiest Job of the 21st Century" and McKinsey & Company projecting a global excess demand of 1.5 million new data scientists. Universities are offering masters courses in data science. Shorter private bootcamps are also offering data science certificates including student-paid programs like General Assembly to employer-paid programs like The Data Incubator.
E-Science E-Science or eScience is computationally intensive science that is carried out in highly distributed network environments, or science that uses immense data sets that require grid computing; the term sometimes includes technologies that enable distributed collaboration, such as the Access Grid. The term was created by John Taylor, the Director General of the United Kingdom's Office of Science and Technology in 1999 and was used to describe a large funding initiative starting in November 2000. E-science has been more broadly interpreted since then, as "the application of computer technology to the undertaking of modern scientific investigation, including the preparation, experimentation, data collection, results dissemination, and long-term storage and accessibility of all materials generated through the scientific process. These may include data modeling and analysis, electronic/digitized laboratory notebooks, raw and fitted data sets, manuscript production and draft versions, pre-prints, and print and/or electronic publications." In 2014, IEEE eScience Conference Series condensed the definition to "eScience promotes innovation in collaborative, computationally- or data-intensive research across all disciplines, throughout the research lifecycle" in one of the working definitions used by the organizers. E-science encompasses "what is often referred to as big data [which] has revolutionized science... [such as] the Large Hadron Collider (LHC) at CERN... [that] generates around 780 terabytes per year... highly data intensive modern fields of science...that generate large amounts of E-science data include: computational biology, bioinformatics, genomics" and the human digital footprint for the social sciences.
Specialization (pre)order The specialization order is often considered in applications in computer science, where T spaces occur in denotational semantics. The specialization order is also important for identifying suitable topologies on partially ordered sets, as it is done in order theory.
Data science In 1996, members of the International Federation of Classification Societies (IFCS) met in Kobe for their biennial conference. Here, for the first time, the term data science is included in the title of the conference ("Data Science, classification, and related methods"), after the term was introduced in a roundtable discussion by Chikio Hayashi.
/r/science /r/science is an Internet forum on Reddit where the community of participants discuss science topics. A popular feature of the forum is "Ask me Anything" (AMA) public discussions. As of 2014, /r/science attracted 30,000-100,000 visitors per day, making it the largest community-managed science forum and an attractive place to host discussions.
Data science It employs techniques and theories drawn from many fields within the broad areas of mathematics, statistics, information science, and computer science, in particular from the subdomains of machine learning, classification, cluster analysis, data mining, databases, and visualization.
E-social science E-social science is a more recent development in conjunction with the wider developments in e-science. It is social science using grid computing and other information technologies to collect, process, integrate, share, and disseminate social and behavioural data.
E-Science librarianship An example of librarians reconfiguring traditional librarian skills to meet the needs of researchers engaging in e-Science is Witt & Carlson’s adaptation of the traditional reference interview into a “data interview” in order to provide effective data management and e-Science services. This interview consists of ten practical queries necessary for understanding the provenance and expectations for the preservation of datasets typical of e-Science that also help illustrate some of the educational tools and skills needed by a librarian new to e-Science. "What is the story of the data? What form and format are the data in? What is the expected lifespan of the dataset? How could the data be used, reused, and repurposed? How large is the dataset, and what is its rate of growth? Who are the potential audiences for the data? Who owns the data? Does the dataset include any sensitive information? What publications or discoveries have resulted from the data? How should the data be made accessible?"
Data science In November 1997, C.F. Jeff Wu gave the inaugural lecture entitled "Statistics = Data Science?" for his appointment to the H. C. Carver Professorship at the University of Michigan.
Open science data In 2015 the World Data System of the International Council for Science adopted a new set of Data Sharing Principles to embody the spirit of 'open science'. These Principles are in line with data policies of national and international initiatives and they express core ethical commitments operationalized in the WDS Certification of trusted data repositories and service.
Open science data Open science data is a type of open data focused on publishing observations and results of scientific activities available for anyone to analyze and reuse. While the "idea" of open science data has been actively promoted since the 1950s, the rise of the Internet has significantly lowered the cost and time required to publish or obtain data.