Deep Learning Specialization on Coursera

Course Tag

Related Wiki Topic

Article Example
Data steward Data stewards begin the stewarding process with the identification of the elements which they will steward, with the ultimate result being standards, controls and data entry. The steward works closely with business glossary standards analysts (for standards), with data architect/modelers (for standards), with DQ analysts (for controls) and with operations team members (good-quality data going in per business rules) while entering data.
Data science The term "data science" (originally used interchangeably with "datalogy") has existed for over thirty years and was used initially as a substitute for computer science by Peter Naur in 1960. In 1974, Naur published "Concise Survey of Computer Methods", which freely used the term data science in its survey of the contemporary data processing methods that are used in a wide range of applications.
Data science In 2001, William S. Cleveland introduced data science as an independent discipline, extending the field of statistics to incorporate "advances in computing with data" in his article "Data Science: An Action Plan for Expanding the Technical Areas of the Field of Statistics," which was published in Volume 69, No. 1, of the April 2001 edition of the International Statistical Review / Revue Internationale de Statistique. In his report, Cleveland establishes six technical areas which he believed to encompass the field of data science: multidisciplinary investigations, models and methods for data, computing with data, pedagogy, tool evaluation, and theory.
Data science Data science is a "concept to unify statistics, data analysis and their related methods" in order to "understand and analyze actual phenomena" with data.
Data science In 2013, the IEEE Task Force on Data Science and Advanced Analytics was launched, and the first international conference: IEEE International Conference on Data Science and Advanced Analytics was launched in 2014. In 2014, the American Statistical Association section on Statistical Learning and Data Mining renamed its journal to "Statistical Analysis and Data Mining: The ASA Data Science Journal" and in 2016 changed its section name to "Statistical Learning and Data Science". In 2015, the International Journal on Data Science and Analytics was launched by Springer to publish original work on data science and big data analytics. 2013 the first "European Conference on Data Analysis (ECDA)" was organised in Luxembourg establishing the European Association for Data Science (EuADS) in August 2015. In September 2015 the Gesellschaft für Klassifikation (GfKl) added to the name of the Society "Data Science Society" at the third ECDA conference at the University of Essex, Colchester, UK.
Data science he initiated the modern, non-computer science, usage of the term "data science" and advocated that statistics be renamed data science and statisticians data scientists.
Data science In April 2002, the International Council for Science: Committee on Data for Science and Technology (CODATA) started the "Data Science Journal", a publication focused on issues such as the description of data systems, their publication on the internet, applications and legal issues. Shortly thereafter, in January 2003, Columbia University began publishing "The Journal of Data Science", which provided a platform for all data workers to present their views and exchange ideas. The journal was largely devoted to the application of statistical methods and quantitative research. In 2005, The National Science Board published "Long-lived Digital Data Collections: Enabling Research and Education in the 21st Century" defining data scientists as "the information and computer scientists, database and software and programmers, disciplinary experts, curators and expert annotators, librarians, archivists, and others, who are crucial to the successful management of a digital data collection" whose primary activity is to "conduct creative inquiry and analysis."
Data science Turing award winner Jim Gray imagined data science as a "fourth paradigm" of science (empirical, theoretical, computational and now data-driven) and asserted that "everything about science is changing because of the impact of information technology" and the data deluge.
Databricks Databricks is a company founded by the creators of Apache Spark, that aims to help clients with cloud-based big data processing using Spark. Databricks grew out of the AMPLab project at University of California, Berkeley that was involved in making Apache Spark, a distributed computing framework built atop Scala. Databricks develops a web-based platform for working with Spark, that provides automated cluster management and IPython-style notebooks. In addition to building the Databricks platform, the company is co-organizing massive open online courses about Spark and runs the largest conference about Spark - Spark Summit.
Data science "Data Scientist" has become a popular occupation with Harvard Business Review dubbing it "The Sexiest Job of the 21st Century" and McKinsey & Company projecting a global excess demand of 1.5 million new data scientists. Universities are offering masters courses in data science. Shorter private bootcamps are also offering data science certificates including student-paid programs like General Assembly to employer-paid programs like The Data Incubator.
Data science Data science, also known as data-driven science, is an interdisciplinary field about scientific methods, processes and systems to extract knowledge or insights from data in various forms, either structured or unstructured, similar to Knowledge Discovery in Databases (KDD).
Data science Although use of the term "data science" has exploded in business environments, many academics and journalists see no distinction between data science and statistics. Writing in Forbes, Gil Press argues that data science is a buzzword without a clear definition and has simply replaced “business analytics” in contexts such as graduate degree programs. In the question-and-answer section of his keynote address at the Joint Statistical Meetings of American Statistical Association, noted applied statistician Nate Silver said, “I think data-scientist is a sexed up term for a statistician...Statistics is a branch of science. Data scientist is slightly redundant in some way and people shouldn’t berate the term statistician.”
Databricks In September 2013, Databricks announced that it had raised $13.9 million from Andreessen Horowitz and said it aimed to offer an alternative to Google's MapReduce system. In March 2014, Databricks certified Alpine Data Labs on Apache Spark. In June 2014, Databricks raised a $33 million Series B, led by New Enterprise Associates, along with additional investment from Series A investor Andreessen Horowitz. Databricks, founded by the team that created Spark, is closely involved with the development of Apache Spark, an open-source project incubated by the Apache Foundation. In 2016 the company raised additional $60 million, bringing the total funding to over a $100 million.
Open science data In 2015 the World Data System of the International Council for Science adopted a new set of Data Sharing Principles to embody the spirit of 'open science'. These Principles are in line with data policies of national and international initiatives and they express core ethical commitments operationalized in the WDS Certification of trusted data repositories and service.
Alpine Data Labs In March 2014, Alpine Data Labs was certified by Databricks on Apache Spark.
Data science In 1996, members of the International Federation of Classification Societies (IFCS) met in Kobe for their biennial conference. Here, for the first time, the term data science is included in the title of the conference ("Data Science, classification, and related methods"), after the term was introduced in a roundtable discussion by Chikio Hayashi.
Open science data The concept of open access to scientific data was institutionally established with the formation of the World Data Center system (now the World Data System), in preparation for the International Geophysical Year of 1957–1958. The International Council of Scientific Unions (now the International Council for Science) established several World Data Centers to minimize the risk of data loss and to maximize data accessibility, further recommending in 1955 that data be made available in machine-readable form.
Data model While "data analysis" is a common term for data modeling, the activity actually has more in common with the ideas and methods of "synthesis" (inferring general concepts from particular instances) than it does with "analysis" (identifying component concepts from more general ones). {"Presumably we call ourselves systems analysts because no one can say systems synthesists."} Data modeling strives to bring the data structures of interest together into a cohesive, inseparable, whole by eliminating unnecessary data redundancies and by relating data structures with relationships.
Data science In November 1997, C.F. Jeff Wu gave the inaugural lecture entitled "Statistics = Data Science?" for his appointment to the H. C. Carver Professorship at the University of Michigan.
National Space Science Data Center The National Space Science Data Center serves as the permanent archive for NASA space science mission data. "Space science" pertains to astronomy and astrophysics, solar and space plasma physics, and planetary and lunar science. As the permanent archive, NSSDC teams with NASA's discipline-specific space science "active archives" which provide access to data to researchers and, in some cases, to the general public. NSSDC also serves as NASA's permanent archive for space physics mission data. It provides access to several geophysical models and to data from some non-NASA mission data.